Hydrolysis of 5 with aq. MeOH- K_2CO_3 to form 1 and 2. Compound 5 (300 mg) in MeOH (15 ml) was treated with aq. K_2CO_3 (10%, 5 ml) and the soln refluxed under N_2 for 20 min. After removal of MeOH in vacuo, H_2O (20 ml) was added and the soln acidified with dil H_2SO_4 . The solid (2 spots on TLC) was filtered and separated by PLC. The polar product was identical with 1 (110 mg) in all respects. The upper band gave 2 (70 mg). Longer heating (1 hr) of 5 (300 mg) in MeOH (15 ml) with aq. K_2CO_3 (10%, 5 ml), afforded 160 mg of 1 and 20 mg of 2.

Methylation of 1. Compound 1 (50 mg) in MeOH (3 ml) was treated with an Et₂O soln of CH₂N₂. After 24 hr the soln was evapd to dryness and the residue crystallized from MeOH when furopinnarin (6) was obtained as needles (40 mg), mp 132–133° (lit. [3] mp 124–125°), R_f 0.68. ¹H NMR: δ 1.90 (6H, s, Me's) 4.28 (3H, s, OMe), 5.08 (1H.

REFERENCES

- Gupta, B. D., Banerjee, S. K., Handa, K. L. and Atal, C. K. (1976) *Phytochemistry* 15, 1319.
- Gupta, B. D., Banerjee, S. K., Handa, K. L. and Atal, C. K. (1978) Indian J. Chem. 16B, 38.
- Gonzalez, A. G., Cardona, R. T., Lopez, D. H., Medina,
 J. M. and Rodriguez, L. F. (1976) Ann. Quim. 72, 588.
- Kumar, R., Gupta, B. D., Banerjee, S. K. and Atal, C. K. (1978) Phytochemistry 17, 2111.

Phytochemistry, 1980, Vol. 19, pp. 1258-1260. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0601-1258 \$02.00/0

TODDASIN, A NEW DIMERIC COUMARIN FROM TODDALIA ASIATICA*

PADAM N. SHARMA, ABOO SHOEB, RANDHIR S. KAPIL and SATYA P. POPLI

Central Drug Research Institute, Lucknow 226001, India

(Revised received 26 September 1979)

Key Word Index—*Toddalia asiatica*; Rutaceae; roots; dimeric coumarin; toddasin; dihydrotoddasin; structural analysis; diuretic activity.

Abstract—A new dimeric coumarin, named toddasin and possessing a cyclohexene ring with a vinylic side-chain interposed between the two coumarin moieties has been isolated from the roots of *Toddalia asiatica*. It has been characterized as (E)-8.8'-[1",4"-dimethyl-3"-cyclohexen-1",2"-ylene vinylene]-bis-[5,7-dimethoxycoumarin] (1). The proposed structure is supported by the mass fragmentation of its dihydro derivative (2).

INTRODUCTION

Celebrated at one time in European medicine under the name of the 'Lopez root', Toddalia asiatica Lamk. (Rutaceae), a climbing shrub, found in northern, western and southern parts of India, has been claimed in the indigenous system of medicine to have cardiotonic, stimulant and antipyretic properties [1]. During a programme for systematic screening of Indian plants at this Institute, a 50% aqueous EtOH extract of its roots showed significant diuretic activity [2]. Subsequent studies led to the location of this activity in the EtOAc-soluble fraction. The present communication deals with the isolation and structural elucidation of a new coumarin, designated as toddasin from this fraction.

RESULTS AND DISCUSSION

The EtOAc-soluble fraction on column chromatography over Si gel gave the dimeric coumarin, toddasin, in 0.01% yield.

Toddasin, mp 241°, $C_{32}H_{32}O_8$, M^+ m/e 544.2096, showed bands in its IR spectrum at $\nu_{\rm max}^{\rm KBr}$ 1725, 1620 (conjugated δ -lactone) and 1590 cm⁻¹ (aromatic) indicative of a coumarin nucleus. Its UV absorption at $\lambda_{\rm max}^{\rm EIGH}$ 228 (log ε 4.91), 263 (4.85), 285 (4.71) and 325 nm (4.84), and that of its dihydro derivative, suggested it to be a 5,7-dioxygenated dimeric coumarin system, though the possibility of an isomeric structure with a 7,8-dioxygenation pattern could not be ruled out at this stage. Its ¹H NMR spectrum revealed the presence of 4 OMe functions at δ 3.55, 3.82 and 3.88. Two pairs of complementary doublets at δ 6.0, 7.91

^{*}CDRI Communication No. 2633.

and 5.66, 7.7 (each 1H, J=10 Hz) were attributed to C-3H, C-4H and C-3'H, C-4'H respectively to the pyran rings and confirmed by decoupling techniques. Another singlet at δ 6.22 was assigned to two aromatic protons, the upfield value of which lends support for the preference of a 5,7-dioxygenation system to the 7,8-isomer. The remaining C_{10} fragment interposed between the two coumarin units contained one allylic Me at δ 1.21, one vinylic Me at δ 1.76 and two trans olefinic protons at δ 6.18 and 6.24 (each d, J=18 Hz). In addition to these, there were signals for one vinylic proton at δ 5.31 (bs), one methine proton at δ 3.41 (m) and for a methylene envelope ca δ 2.55 accounting for 4 protons.

The preceding evidence together with the bisectral cleavage of toddasin under electron impact involving a retro-Diels-Alder process into the only fragment ion (3), $(C_{16}H_{16}O_4)$ constituting the base peak, permitted the identification of the monoterpene part, $C_{10}H_{14}$, as a cyclohexene ring with a vinylic side chain. The chemical shift values of the C-6H in 8-alkylated-5,7-dioxygenated monomeric coumarins range from δ 6.28 to 6.45, whereas the C-8H in the 6-alkylated isomers, for example in toddaculine, [3] resonates at $ca \delta$ 6.62. The bridging of the monoterpene part with the coumarin nuclei through C-8 and C-8' was, therefore, favoured in this case by observing the chemical shift values of the two aromatic protons at δ 6.22 in toddasin and δ 6.11 and 6.2 in its dihydro derivative.

Catalytic hydrogenation of toddasin under controlled conditions gave the dihydro derivative, mp 235°, M^+ m/e 546, $(C_{32}H_{34}$ $O_8)$ showing UV absorption at $\lambda_{\max}^{\text{MeOH}}$: 220, 263 and 330 nm. Retention of the olefinic proton of the cyclohexene ring $(\delta 5.05, bs)$ and the presence of the doublets of the pyran ring protons at δ 5.94, 7.82 and 5.90, 7.78, indicated that the reduction had occurred at the site of the *trans* olefinic bond only. This was further confirmed by the appearence in its MS of the tropylium ion at m/e 219 caused by the fission of the molecule at a point β —to one of the coumarin nuclei. The rest of the fragmentation pattern showed the usual losses of elements of formaldehyde and carbon monoxide from the ion m/e 219.

The above evidence led to the formulation of toddasin as (E)-8,8'-[1",4"-dimethyl-3"-cyclohexen-1",2"-ylene vinylene]-bis-5,7-dimethoxycoumarin] (1) and

its dihydro derivative as (2).

Toddasin, thus represents the third example of a dimeric coumarin incorporating identical cyclohexene nuclei [4, 5].

In a preliminary evaluation, toddasin possessed diuretic activity (71%) at a dose of 21 mg/kg in rats when compared with chlorothiazide (125 mg/kg, 100%) [6].

EXPERIMENTAL

All mps are uncorr. ¹H NMR spectra were recorded at 90 MHz using TMS as int. standard. MS were recorded using a direct inlet system.

Isolation of toddasin. Powdered roots of T. asiatica (6 kg) were percolated with 95% EtOH (3×7 l.). The residue (800 g) obtained after removal of solvent was diluted with H_2O and defatted with hexane (4×500 ml). The defatted material was treated with 2M HCl (1.4 l.) and extracted with Et_2O (4×300 ml) followed by EtOAc (4×600 ml). The latter extract on concn left a residue (160 g), part of which (25 g) was chromatographed on a column of Si gel (1 kg) in C_6H_6 and eluted with increasing proportions of EtOAc followed by MeOH.

Toddasin (1). The compound (100 mg) was eluted with C_6H_6 -EtOAc (9:1) and had mp 241° (CH_2CI_2 -Et₂O); [α]_{27°} 0° (C_5H_5N , c 1.24); UV λ_{max}^{EtOH} nm: 228 (log ε 4.91), 263 (4.85), 285 (4.77) and 325 (4.84); IR ν_{max}^{KB} cm⁻¹: 1725, 1620 and 1590; ¹H NMR (CDCI₃): δ 1.21 (s, 3H, CH₃), 176 (bs, 3H, CH₃), 3.41 (m, 1H, C-2″H), 3.55 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.88 (s, 6H, 2×OCH₃), 5.31 (bs, 1H, W_{1/2} = 10 Hz, C-3″H), 5.66 (d, 1H, J = 10 Hz, C-3″H), 6.0 (d, 1H, J = 10 Hz, C-3H), 6.18 (d, 1H, J = 18 HzCα-H), 6.22 (s, 2H, C-6H and C-6′H), 6.24 (d, 1H, J = 18 Hz, Cβ-H), 7.7 (d, 1H, J = 10 Hz, C-4′H) and 7.91 (d, 1H, J = 10 Hz, C-4H); MS: m/e M⁺, 544.2096 (40%), ($C_{32}H_{32}O_8$), 273.1099 (18) ($C_{16}H_{17}O_4$), 272.1081 (100) ($C_{16}H_{16}O_4$), 257.0844 (5) $C_{15}H_{13}O_4$), 241.0872 (22) ($C_{15}H_{13}O_3$), 219 (10), 213 (8), 189 (21) and 161 (12).

Dihydrotoddasin (2). A soln of 1 (30 mg) in CHCl₃ (10 ml) was shaken with Pd-C (10%, 5 mg) in an atmosphere of H_2 until the UV absorption at $\lambda_{\rm max}$ 285 nm disappeared (ca 20 min). The residue obtained on concn of the filtrate was chromatographed over a column of Si gel in C_6H_6 and eluted with increasing proportions of EtOAc to afford dihydrotod-

dasin (11 mg), mp 235°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 220, 263 and 330; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1730, 1605 and 1590; ¹H NMR (CDCl₃): δ 0.99 (s, 3H, CH₃), 1.64 (bs, 3H, CH₃), 1.89–2.76 (m, 8H, 4×CH₂), 3.47 (s, 1H, C-2″H), 3.79 (s, 12H, 4×OCH₃), 5.05 (bs, 1H, C-3″H), 5.9 (d, 1H, J = 10 Hz, C-3′H), 5.94 (d, 1H, J = 10 Hz, C-3H), 6.11 (s, 1H, C-6′H), 6.2 (s, 1H, C-6H), 7.78 (d, 1H, J = 10 Hz, C-4′H) and 7.82 (d, 1H, J = 10 Hz, C-4H); MS: m/e M⁺ 546, 273, 272, 257, 241, 233, 219, 189, 161, 159 and 131.

REFERENCES

- Dey, B. B., Pillay, P. P., David, J. C. and Rajamanikam, N. (1935) *Indian J. Med. Res.* 22, 765.
- Dhawan, B. N., Patnaik, G. K., Rastogi, R. P., Singh, K. K. and Tandon, J. S. (1977) *Indian J. Exp. Biol.* 15, 208.
- 3. Murray, R. D. H., Ballantyne, M. M., Hogg, T. C. and McCabe, P. H. (1975) *Tetrahedron* **31**, 2960.
- Brown, K. L., Ivov, A., Burfitt, R., Cambie, R. C., Hall, D. and Mathai, K. P. (1975) Aust. J. Chem. 28, 1327.
- Kutney, J. P., Inaba, T., Dreyer, D. L. (1970) Tetrahedron 26, 3171.
- Kar, K., Sarin, J. P. S. and Khanna, N. M. (1977) Indian J. Pharm. 39, 17.

Phytochemistry, 1980, Vol. 19, pp. 1260-1261. Pergamon Press Ltd. Printed in England.

A NEW NEOLIGNAN AND OTHER PHENOLIC CONSTITUENTS FROM CEDRUS DEODARA*

P. K. AGRAWAL, S. K. AGARWAL and R. P. RASTOGI

Central Drug Research Institute, Lucknow-226001, India

(Revised received 7 September 1979)

Key Word Index—*Cedrus deodara*; Pinaceae; 2-(3'-methoxy-4'-hydroxyphenyl)-3-hydroxymethyl-2,3-dihydro-7-hydroxybenzofuran-5-*n*-propanol; cedrusin; dihydrobenzofuran neolignans; tetrahydrofuran lignan; phenyl tetralin lignan; dihydroflavonol glucoside.

In a previous communication the characterization of dihydroflavonols from *Cedrus deodara* was described [1]. The present paper reports the identification of a further seven substances from the same plant, including four neolignans; dihydrodehydrodiconiferyl alcohol and its 4'-glucoside, cedrusin 1 and its 4'-glucoside. Cedrusin has not been reported prevously as a natural product, although the 4'-glucoside has been described recently from *Pinus sylvestris* [2] and *P. contorta* [3]. The other known compounds characterized in the present study include the lignans, lariciresinol and isolariciresionol and the dihydroflavonol, taxifolin 3'-glucoside.

Cedrusin, $C_{19}H_{22}O_6$, M^+ m/e 346. The UV maxima indicated the presence of a 2-aryl-3,5-dialkyl-7-hydroxybenzofuran chromophore in the molecule. ¹H NMR revealed the presence of an arylmethoxyl, a methylol group and an oxymonobenzylic proton (δ 5.43, d) in addition to 5 aryl protons. Other signals at δ 1.85, 2.54 and 3.55 indicated the presence of an n-propanol side-chain. The formation of a dimethyl ether sustaining two methol groups was borne out by ¹H NMR and MS of the dimethyl diacetyl and tetraacetyl derivatives. Thus, the structure of cedrusin

was assigned as **1**, 2-(3'-methoxy-4'-hydroxyphenyl)-3-hydroxymethyl-2,3-dihydro-7-hydroxybenzofuran-5-*n*-propanol.

EXPERIMENTAL

Isolation procedure. The filtrate, obtained on Pb(OAc)₂ pptn of the BuOH-soluble fraction of the plant extract was saturated with H₂S, filtered and evapd to a brown viscous mass (43.2 g), which was chromatographed on cellulose and 9 fractions collected (Table 1).

OH OH OMe

^{*}CDRI Communication No. 2580.